منابع مشابه
2 4 Se p 19 98 Sluggish Kinetics in the Parking Lot Model
We investigate, both analytically and by computer simulation, the kinetics of a microscopic model of hard rods adsorbing on a linear substrate. For a small, but finite desorption rate, the system reaches the equilibrium state very slowly, and the long-time kinetics display three successive regimes: an algebraic one where the density varies as 1/t, a logarithmic one where the density varies as 1...
متن کاملRecord dynamics in the parking-lot model.
We present an analytical and numerical study of the parking lot model (PLM) of granular relaxation and make a connection to the aging dynamics of dense colloids. As we argue, the PLM is a Kinetically Constrained Model which features astronomically large equilibration times and displays a characteristic aging behavior on all observable time scales. The density of parked cars displays quasi-equil...
متن کاملReversible polydisperse parking lot model.
We use an improved reversible parking lot model to study the compaction of vibrated polydisperse media. The particle sizes are distributed according to a truncated power law. We introduce a self-consistent desorption mechanism with a hierarchical initialization of the system. In this way, we approach densities close to unity. The final density depends on the polydispersity of the system as well...
متن کاملAging and response properties in the parking-lot model
An adsorption-desorption (or parking-lot) model can reproduce qualitatively the densification kinetics and other features of a weakly vibrated granular material. Here we study the the two-time correlation and response functions of the model and demonstrate that their behavior is consistent with recently observed memory effects in granular materials. Although the densification kinetics and hyste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1999
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/32/16/008